
DAG	EXECUTION	MODEL,
WORK	STEALING
CISTER	Summer	Internship	2017	

1

Luís	Nogueira lmn@isep.ipp.pt



Recommended	textbooks

2

The	Art	of	Multiprocessor	
Programming

Maurice	Herlihy,	Nir Shavit

Patterns	for	Parallel
Programming

Timothy	Mattson,	et.al.

Parallel	Programming	with	
Microsoft	.NET

http://parallelpatterns.codeplex.com/



Computational	complexity	of	(sequential)	
algorithms	

•Model:	each	step	takes	a	unit	time

• Determine	the	time	(/space)	required	by	the	
algorithm	as	a	function	of	input	size

3



Sequential	sorting	example
• Given	an	array	of	size	n

•Merge	Sort	takes	O(n	.	log	n)	time
• Bubble	Sort	takes	O(n2)	time

4



Sequential	sorting	example
• Given	an	array	of	size	n

•Merge	Sort	takes	O(n	.	log	n)	time
• Bubble	Sort	takes	O(n2)	time

• But,	a	Bubble	Sort	implementation	can	sometimes	be	
faster	than	a	Merge	Sort	implementation
•Why?

5



Sequential	sorting	example
• Given	an	array	of	size	n

•Merge	Sort	takes	O(n	.	log	n)	time
• Bubble	Sort	takes	O(n2)	time

• But,	a	Bubble	Sort	implementation	can	sometimes	be	
faster	than	a	Merge	Sort	implementation

• The	model	is	still	useful
• Indicates	the	scalability	of	the	algorithm	for	large	inputs
• Lets	us	prove	things	like	a	sorting	algorithm	requires	at	least	
O(n.	log	n)	comparisons

6



We	need	a	similar	model	for	
parallel	algorithms

7



Sequential	Merge	Sort

8

16MB	input	(32-bit	integers)

Recurse(left)

Recurse(right)

Copy	back	to	input	array

Merge	to	scratch	array

Time

Sequential
execution



The	DAG	Execution	Model	of	a	parallel	
computation

• Given	an	input,	dynamically	create	a	DAG
• Directed	acyclic	graphs	representations	of	partial	orderings	have	
many	applications	in systems	of	tasks	with	ordering	constraints

• Nodes represent	sequential	computation
• Weighted	by	the	amount	of	work	

• Edges represent	dependencies
• Node	A	à Node	B	means	that	B	cannot	be	scheduled	unless	A	is	
finished

9



Parallel	Merge	Sort	
(as	Parallel	Directed	Acyclic	Graph)		

10

16MB	input	(32-bit	integers)

Recurse(left) Recurse(right)

Copy	back	to	input	array

Merge	to	scratch	array

Time Parallel
execution



Parallel	DAG	for	Merge	Sort	(2-core)

11

Split

Sequential		Sort

Merge

Sequential	Sort

Time



Parallel	DAG	for	Merge	Sort	(4-core)

12



Parallel	DAG	for	Merge	Sort	(8-core)

13



Performance	measures
• Given	a	graph	G,	a	scheduler	S,	and	P processors

• 𝑇" 𝑆 : time	on	P	processors	using	scheduler	S	

• 𝑇" :	time	on	P	processors	for	the	best	scheduler

• 𝑇% :	time	on	a	single	processor	(sequential	cost)

• 𝑇& :	time	assuming	infinite	resources

14



Work	and	Depth
• 𝑇% =	Work
• The	total	number	of	operations	executed	by	a	computation

• 𝑇&	=	Depth
• The	longest	chain	of	sequential	dependencies	(critical	path)	
in	the	parallel	DAG
• Also	called	as	Span

15



T1 (work):	Time	to	run	sequentially

16



T∞ (Depth):	Critical	path	length

17

Sequential bottleneck



Work	Law
• You	cannot	avoid	work	by	parallelizing

• Speedup =	
()
(*
≤ P

18

𝑇%
𝑃 ≤ 𝑇"



Work	Law
• You	cannot	avoid	work	by	parallelizing

• Speedup =	
()
(*
≤ P

• Can	speedup	be	more	than	2	when	we	go	from	1-core	
to	2-cores,	in	practice?

19

𝑇%
𝑃 ≤ 𝑇"



Depth	Law
•More	resources	should	make	things	faster

• Unfortunately,	you	are	limited	by	the	sequential	
bottleneck

𝑇" ≥ 𝑇&

20



Amount	of	parallelism
• A	metric	which	indicates	how	many	operations	can	be	
simultaneously	executed	in	every	step	of	the	critical	
path																				

Parallelism	=	𝑻𝟏
𝑻1

21



Maximum	speedup	possible

• Speedup	is bounded	above	by	available	parallelism

22

Parallelism
𝑇%
𝑇"
≤ 	

𝑻𝟏
𝑻&

Speedup



Work/Depth	of	Merge	Sort	
(Sequential	Merge)

•Work	𝑻𝟏 :	𝑂 𝑛 log 𝑛
• Depth	𝑻& :	𝑂 𝑛
• Takes	𝑂 𝑛 time	to	merge	𝑛	elements

• Parallelism:	𝑻𝟏
𝑻1

:	𝑂 log 𝑛 - really	bad!

23



Main	message
• All	programs	contain:
• Parallel	sections	(we	hope!)
• Sequential	sections	(we	despair!)

• Sequential	sections	limit	the	parallel	effectiveness

24



Main	message
• Analyse the	Work and	Depth of	your	algorithm

• Parallelism	is	Work/Depth

• Try	to	decrease	Depth
• The	critical	path:	a	sequential bottleneck

• If	you	increase	Depth,	better	increase	Work	by	a	lot	
more!

25



Limits	of	parallel	computation
• Theoretical	limits
• Amdahl’s	Law
• Gustafson’s	Law

• Practical	limits
• Load	balancing	(waiting),	Scheduling	(shared	processors	or	
memory),	Cost	of	Communications,	I/O…

• Other	considerations
• Time	to	re-write	code

26



Amdahl’s	law

27

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑓, 𝑐 = 		
1

1 − 𝑓 + 𝑓𝑐

𝑓 =	the	parallel portion	of	execution
1 − 𝑓 	 =	the	sequential portion	of	execution
𝑐	 =	number	of	cores used



Amdahl’s	law,	𝑓 = 70%
• Sorting	takes	70%	of	the	execution	time	of	a	
sequential	program

• You	replace	the	sorting	algorithm	with	one	that	scales	
perfectly	on	multi-core	hardware

• How	many	cores	do	you	need	to	get	a	4x	speed-up	on	
the	program?

28



Amdahl’s	law,	𝑓 = 70%

29

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee
du

p

#cores

Desired	4x	
speedup

Speedup	achieved	
(perfect	scaling	on	70%)



Amdahl’s	law,	𝑓 = 70%

30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee
du

p

#cores

Desired	4x	
speedup

Speedup	achieved	
(perfect	scaling	on	70%)

Limit	as	c→∞	=	1/(1-f)	=	3.33



Amdahl’s	law,	𝑓 = 10%

31

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee
du

p

#cores

Speedup	achieved	
with	perfect	scaling

Amdahl’s	law	limit,	
just	1.11x



Amdahl’s	law,	𝑓 = 98%

32

0

10

20

30

40

50

60

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

Sp
ee
du

p

#cores



Lesson
• Speedup	is	limited	by	sequential	code

• Even	a	small	percentage	of	sequential	code	can	
greatly	limit potential	speedup

• In	reality,	the	situation	is	usually	even	worse	than	
predicted	by	Amdahl’s	Law
• Load	balancing	(waiting),	Scheduling	(shared	processors	or	
memory),	Cost	of	Communications,	I/O…

33



Gustafson’s	Law
Any	sufficiently	large	problem	can	be	parallelized	effectively

34

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑓, 𝑐 = 𝑓𝑐 + 1 − 𝑓

Key	assumption:	𝑓	increases	as	problem size	increases

𝑓 =	the	parallel portion	of	execution
1 − 𝑓 	 =	the	sequential portion	of	execution
𝑐	 =	number	of	cores used



Scaling:	Strong	vs	Weak
•We	want	to	know	how	quickly we	can	complete	
analysis	on	a	particular	data	set	by	increasing	P
• Amdahl’s	Law	
• Known	as	“strong	scaling”	

•We	want	to	know	if	we	can	analyse more	data in	the	
same	amount	of	time	by	increasing	P	
• Gustafson’s	Law	
• Known	as	“weak	scaling”	

35



And	now…
• Design	of	a	greedy	scheduler
• Task	abstraction

36



Greedy	Scheduler
• A	scheduler	which	attempts	to	do	as	much	work	as	
possible at	every	step

• If	more	than	P	nodes	can	be	scheduled,	pick	any	
subset	of	size	P

• If	less	than	P	nodes	can	be	scheduled,	schedule	them	
all

37



Performance	of	the	Greedy	Scheduler
• Given	P	processors,	a	greedy	scheduler	executes	
any	computation	with	work	𝑇% and	critical	path	
length	𝑇& in	time:

𝑇" 𝐺𝑟𝑒𝑒𝑑𝑦 ≤
𝑇%
𝑃 + 𝑇&

• Remember:	
• Work	law:		()

"
≤ 𝑇"

• Depth	law:	𝑇& ≤ 𝑇"

38



Performance	of	the	Greedy	Scheduler
• Given	P	processors,	a	greedy	scheduler	executes	
any	computation	with	work	𝑇% and	critical	path	
length	𝑇& in	time:

𝑇" 𝐺𝑟𝑒𝑒𝑑𝑦 ≤
𝑇%
𝑃 + 𝑇&

• The	idea	is	to	operate	in	the	range	where	𝑇%/ 𝑃
dominates
• Adding	more	processors	reduces	𝑇%/	𝑃 while	𝑇& remains	
unchanged
• Once	𝑇& becomes	significant	in	comparison	to	𝑇%/	𝑃,	the	
ability	to	increase	parallelism	is	reduced		

39



Case	study:	*Socrates
• The	*Socrates	massively	parallel	chess	program	had	
two	versions,	one	including	an	optimisation that	
significantly	improved	its	performance	on	32	
processors
• The	performance	reduced	the	total	work,	but	increased	the	
critical	path	length

• 𝑇]^ =	65	sec	à 𝑇% =	2048	sec,	𝑇& =	1	sec
• 𝑇′]^ =	40	sec	à 𝑇% =	1024	sec,	𝑇& =	8	sec

40



Case	study:	*Socrates
• On	512	processors	the	optimisation becomes	a	
problem!

• 𝑇 %^ =	𝑇%	/512	+	𝑇& =	5	sec
• 𝑇′`%^ =	𝑇′%	/512	+	𝑇&	=	10	sec

• The	optimization	that	sped	up	the	program	on	32	
processors	would	have	made	the	program	twice	as	
slow	on	512	processors	

41



Case	study:	*Socrates
• The	optimized	version’s	depth	of	8,	which	was	not	the	
dominant	term	in	the	running	time	on	32	processors,	
became	the	dominant	term	on	512	processors,	
nullifying	the	advantage	from	using	more	processors

•Work	and	Span	can	provide	a	better	means	of	
extrapolating	performance than	can	measured	
running	times	

42



(Simple)	Tasks
• A	node	in	the	DAG
• Executing	a	task	generates	dependent	subtasks

43

Split(16) Merge(16)

Split(8) Merge(8)
Sort(4)

Sort(4)

Split(8) Merge(8)
Sort(4)

Sort(4)



(Simple)	Tasks
• A	node	in	the	DAG
• Executing	a	task	generates	dependent	subtasks
• Task	C	is	generated	by	A	or	B,	whoever	finishes	last

44

Split(16) Merge(16)

Split(8) Merge(8)
Sort(4)

Sort(4)

Split(8) Merge(8)
Sort(4)

Sort(4)

C
A

B



Design	constraints	of	the	scheduler
• The	DAG	is	generated	dynamically
• Based	on	inputs	and	program	control	flow
• The	graph	is	not	known	ahead	of	time

• The	amount	of	work	done	by	a	task	is	dynamic
• The	weight	of	each	node	is	not	know	ahead	of	time

• Number	of	processors	P	can	change	at	runtime
• Hardware	processors	are	shared	with	other	processes and	
kernel

45



Design	requirements	of	the	scheduler
• Should	be	greedy
• A	processor	cannot	be	idle	when	tasks	are	pending

• Should	limit	communication between	processors

• Should	schedule	related	tasks	in	the	same	processor
• Tasks	that	are	likely	to	access	the	same	cache	lines

46



Attempt	0:	Centralized	Scheduler
• Approach
• Manager	distributes	tasks	to	workers

•Manager
• Assigns	tasks	to	workers,	ensures	no	worker	is	idle

•Workers
• On	task	completion,	submit	generated	tasks	to	the	manager

47



Attempt	1:	Centralized	Work	Queue
• Approach
• All	processors	share	a	common	work	queue

• Every	processor	dequeues a	task	from	the	work	queue

• On	task	completion,	enqueue the	generated	tasks	to	
the	work	queue

48



Attempt	2:	Work	Sharing
• Approach
• Loaded workers	share

• Every	processor	pushes	and	pops	tasks	into	a	local	
work	queue

•When	the	work	queue	gets	large,	send	tasks	to	other	
processors

49



Disadvantages	of	Work	Sharing
• If	all	processors	are	busy,	each	will	spend	time	trying	
to	offload,	performing	communication	when	busy

• Difficult	to	know	the	load	on	processors
• A	processor	with	two	large	tasks	might	take	longer	than	a	
processor	with	five	small	tasks

• Tasks	might	get	shared	multiple	times before	being	
executed

• Some	processors	can	be	idle while	others	are	loaded
• Not	greedy

50



Attempt	3:	Work	Stealing
• Approach
• Idle workers	steal

• Each	processor	maintains	a	local	work	queue

• Pushes generated	tasks	into	the	local	queue

•When	local	queue	is	empty,	steal	a	task	from	another	
processor

51



Nice	properties	of	Work	Stealing
• Communication	done	only	when	idle

• Each	task	is	stolen	at	most	once

• This	scheduler	is	greedy,	assuming	stealers	always	
succeed

• Limited	communication
• 𝑂(𝑃. 𝑇&) steals	on	average	for	some	stealing	strategies

52



Work	Stealing	Queue	data	structure
• A	specialized	deque (Double-Ended	Queue)	with	three	
operations:
• Push :	Local	processor	adds	newly	created	tasks	
• Pop :	Local	processor	removes	task	to	execute
• Steal :	Remote	processors	remove	tasks

53

Push



Work	Stealing	Queue	data	structure
• A	specialized	deque (Double-Ended	Queue)	with	three	
operations:
• Push :	Local	processor	adds	newly	created	tasks	
• Pop :	Local	processor	removes	task	to	execute
• Steal :	Remote	processors	remove	tasks

54

Push Pop?

Steal?

Pop?

Steal?



Work	Stealing	Queue	data	structure
• A	specialized	deque (Double-Ended	Queue)	with	three	
operations:
• Push :	Local	processor	adds	newly	created	tasks	
• Pop :	Local	processor	removes	task	to	execute
• Steal :	Remote	processors	remove	tasks

55

Push

Steal

Pop



Advantages
• Stealers	don’t	interact	with	local	processor when	the	
queue	has	more	than	one	task

• Popping	recently	pushed	tasks	improves	locality

• Stealers	take	the	oldest	tasks,	which	are	likely	to	be	
the	largest (in	practice)

56

Push

Steal

Pop



Assignment
• Study	the	paper	“Scheduling	Multithreaded	
Computations	by	Work	Stealing”	by	Blumofe and	
Leiserson

• Discuss	how	the	work	stealing	approach	can	be	
extended	to	real-time	systems

6/16/2010 DAG	Execution	Model,	Work	and	Depth 57


